|
2023 |
RT-RPA-Cas12a-based assay facilitates the discrimination of SARS-CoV-2 variants of concern |
Guiyue Tang,Zilong Zhang,Wei Tan,Fei Long,Jingxian Sun,Yingying Li,Siwei Zou,Yujiao Yang,Kezhu Cai,Shenwei Li,Zhiyi Wang,Jiakun Liu,Guobing Mao,Yingxin Ma,Guo-Ping Zhao,Zhen-Gan Tian,Wei Zhao |
Sens Actuators B Chem |
36743821 |
10.1016/j.snb.2023.133433 |
RT-RPA-Cas12a-based assay facilitates the discrimination of SARS-CoV-2 variants of concern
Author(s):
Guiyue Tang,Zilong Zhang,Wei Tan,Fei Long,Jingxian Sun,Yingying Li,Siwei Zou,Yujiao Yang,Kezhu Cai,Shenwei Li,Zhiyi Wang,Jiakun Liu,Guobing Mao,Yingxin Ma,Guo-Ping Zhao,Zhen-Gan Tian,Wei Zhao
Journal:
Sens Actuators B Chem
Year:
2023
Abstract:
Timely and accurate detection of SARS-CoV-2 variants of concern (VOCs) is urgently needed for pandemic surveillance and control. Great efforts have been made from a mass of scientists in increasing the detection sensitivity and operability, and reducing the turn-around time and cost. Here, we report a nucleic acid testing-based method aiming to detect and discriminate SARS-CoV-2 mutations by combining RT-RPA and CRISPR-Cas12a detecting assays (RRCd). With a detection limit of 10 copies RNA/reaction, RRCd was validated in 194 clinical samples, showing 89% positive predictive agreement and 100% negative predictive agreement, respectively. Critically, using specific crRNAs, representatives of single nucleotide polymorphisms and small deletions in SARS-CoV-2 VOCs including N501Y, T478K and ΔH69-V70 were discriminated by RRCd, demonstrating 100% specificity in clinical samples with C t < 33. The method completes within 65 min and could offer visible results without using any electrical devices, which probably facilitate point-of-care testing of SARS-CoV-2 variants and other epidemic viruses.
|