RPB0326

Pathogen Description

Target Pathogen Pathogen Name NCBI Taxonomy ID Order Family Genus Species Pathogen type
SARS-CoV-2 SARS-CoV-2, 2019-nCoV, COVID-19, COVID-19 virus, SARS2, Wuhan coronavirus, Human coronavirus 2019, COVID19, HCoV-19, SARS-2, SARS-CoV4 2697049 Nidovirales Coronaviridae Betacoronavirus Severe acute respiratory syndrome-related coronavirus virus

Primer Description

Primer Name Sequence(5'-3') Length(bp) Primer Final Concentration(μM) GC Content(%) Predicted Melting Temperature(℃) Molecular Weight(g/moles) Positions in GenBank accession number
F AGGCAGCAGTAGGGGAACTTCTCCTGCTAGAAT 33 320 nM 51.52 66.82 10202.68 \
R TTGGCCTTTACCAGACATTTTGCTCTCAAGCTG 33 320 nM 45.45 63.78 10045.57 \

Gene Description

Target Gene GenBank ID
N gene \

Assay Description

Application Assay Primer Designing Software Reaction Time(min) Assay Temperature(℃) Readout System(s) Limit of Detection(LoD) Sensitivity(%) Specificity(%)
SPOC is time-saving, is easy to operate, and can eliminate centrifugal and complex hardware devices, satisfying the demand for point-of-care diagnostics in resource-constrained settings. RPA- CRISPR-Cas12a PrimerBLAST 12 min 39°C CRISPR-Cas12a 1 copy/μL 0.96 \

Publication Description

Year of Publication Title Author(s) Journal PMID DOI
2025 Short-Time Preamplification-Assisted One-Pot CRISPR Nucleic Acid Detection Method with Portable Self-Heating Equipment for Point-of-Care Diagnosis Fei Hu,Kaihui Liu,Yunyun Zhang,Shuhao Zhao,Tianyi Zhang,Cuiping Yao,Xing Lv,Jing Wang,Xiaolong Liu,Niancai Peng Analytical Chemistry 39754554 10.1021/acs.analchem.4c05026

Short-Time Preamplification-Assisted One-Pot CRISPR Nucleic Acid Detection Method with Portable Self-Heating Equipment for Point-of-Care Diagnosis

Author(s):

Fei Hu,Kaihui Liu,Yunyun Zhang,Shuhao Zhao,Tianyi Zhang,Cuiping Yao,Xing Lv,Jing Wang,Xiaolong Liu,Niancai Peng

Journal:

Analytical Chemistry

Year:

2025

Abstract:

Infectious diseases, especially respiratory infections, have been significant threats to human health. Therefore, it is essential to develop rapid, portable, and highly sensitive diagnostic methods for their control. Herein, a short-time preamplified, one-pot clustered regularly interspaced short palindromic repeats (CRISPR) nucleic acid detection method (SPOC) is developed by combining the rapid recombinase polymerase amplification (RPA) with CRISPR-Cas12a to reduce the mutual interference and achieve facile and rapid molecular diagnosis. SPOC can reduce the detection time and stably detect up to 1 copy/μL of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA without affecting the detection sensitivity. A highly sensitive one-pot assay integrated with reverse transcription RPA is achieved by wrapping paraffin with a specific melting point on the lyophilized CRISPR reagent surface. A self-heating pack is designed based on thermodynamic principles to melt the paraffin and release CRISPR reagents, enabling low-cost and time-saving detection. Notably, the designed system, coupled with RNA extraction-free technology, can achieve "sample-in-answer-out" detection of the SARS-CoV-2 Orf1ab gene within 22 min using smartphone imaging. The developed assay is validated on 12 clinical samples, and the results 100% correlate with real-time polymerase chain reaction. SPOC is time-saving, is easy to operate, and can eliminate centrifugal and complex hardware devices, satisfying the demand for point-of-care diagnostics in resource-constrained settings.