Enhanced Isothermal Amplification for Ultrafast Sensing of SARS-CoV-2 in Microdroplets
Author(s):
Mengyun Zhou , Chuan Fan , Lirong Wang , Tailin Xu , Xueji Zhang
Journal:
Analytical Chemistry
Year:
2022
Abstract:
Rapid and high-throughput screening is critical to control the COVID-19 pandemic. Recombinase polymerase amplification (RPA) with highly accessible and sensitive nucleic acid amplification has been widely used for point-of-care infection diagnosis. Here, we report an integrated microdroplet array platform composed of an ultrasonic unit and minipillar array to enhance the RPA for ultrafast, high-sensitivity, and high-throughput detection of SARS-CoV-2. On such a platform, the independent microvolume reactions on individual minipillars greatly decrease the consumption of reagents. The microstreaming driven by ultrasound creates on-demand contactless microagitation in the microdroplets and promotes the interaction between RPA components, thus greatly accelerating the amplification. In the presence of microstreaming, the detection time is 6-12 min, which is 38.8-59.3% shorter than that of controls without microstreaming, and the end-point fluorescence intensity also increased 1.3-1.7 times. Furthermore, the microagitation-enhanced RPA also exhibits a lower detection limit (0.42 copy/μL) for SARS-CoV-2 in comparison to the controls. This integrated microdroplet array detection platform is expected to meet the needs for high-throughput nucleic acid testing (NAT) to improve the containment of viral transmission during the epidemic, as well as provide a potential platform for the timely detection of other pathogens or viruses.
|