RPB0181

Pathogen Description

Target Pathogen Pathogen Name NCBI Taxonomy ID Order Family Genus Species Pathogen type
Mycobacterium tuberculosis Mycobacterium tuberculosis, Bacterium tuberculosis, Bacillus tuberculosis, Mycobacterium tuberculosis variant tuberculosis 1773 Corynebacteriales Mycobacteriaceae Mycobacterium Mycobacterium tuberculosis Bacterium

Primer Description

Primer Name Sequence(5'-3') Length(bp) Primer Final Concentration(μM) GC Content(%) Predicted Melting Temperature(℃) Molecular Weight(g/moles) Positions in GenBank accession number
F CAGTAGTGGGGGTCATCGCGTGATCCTTCGAAACGACC 38 \ 57.9 71.12 11719.64 \
R CTCGCCTGTGCGAGTTGGTCAGCCAGAAGCTG 32 \ 62.5 71.54 9857.42 \
P CGATAAGATGAGAAGAGGTCATTGCGTCATT(F)(H)C(Q)TCGATTGACTTTTGCT-SPACER C3 48 \ 41.7 66 14827.67 \

Gene Description

Target Gene GenBank ID
IS1081 \

Assay Description

Application Assay Primer Designing Software Reaction Time(min) Assay Temperature(℃) Readout System(s) Limit of Detection(LoD) Sensitivity(%) Specificity(%)
\ RPA BLASTN and the NCBI nucleotide database 20 39 \ 5.0 fg of DNA per reaction 100 100

Publication Description

Year of Publication Title Author(s) Journal PMID DOI
2014 Rapid Detection of Mycobacterium tuberculosis by Recombinase Polymerase Amplification David S. Boyle, Ruth McNerney, Hwee Teng Low,  Brandon Troy Leader,  Ailyn C. Pérez-Osorio, Jessica C. Meyer, Denise M. O'Sullivan,  David G. Brooks,  Olaf Piepenburg, and Matthew S. Forrest PLOS ONE 25118698 10.1371/journal.pone.0103091

Rapid Detection of Mycobacterium tuberculosis by Recombinase Polymerase Amplification

Author(s):

David S. Boyle, Ruth McNerney, Hwee Teng Low,  Brandon Troy Leader,  Ailyn C. Pérez-Osorio, Jessica C. Meyer, Denise M. O'Sullivan,  David G. Brooks,  Olaf Piepenburg, and Matthew S. Forrest

Journal:

PLOS ONE

Year:

2014

Abstract:

Improved access to effective tests for diagnosing tuberculosis (TB) has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA) is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC) DNA in <20 minutes at 39°C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110) and 20 fg (IS1081)were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9) and 86.1% (95%CI: 78.1, 94.1) respectively (n = 71). Specificities were 100% and 88.6% (95% CI: 80.8, 96.1) respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2) and 70.8% (95%CI: 62.9, 78.7) were obtained (n = 90). Specificities were 95.4 (95% CI: 92.3,98.1) and 88% (95% CI: 83.6, 92.4) respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB assays could be of use for integration into a point-of-care test for use in resource constrained settings.