RPB0153

Pathogen Description

Target Pathogen Pathogen Name NCBI Taxonomy ID Order Family Genus Species Pathogen type
Staphylococcus aureus Staphylococcus aureus, Micrococcus aureus, Staphylococcus pyogenes aureus 1280 Bacillales Staphylococcaceae Staphylococcus Staphylococcus aureus Bacterium

Primer Description

Primer Name Sequence(5'-3') Length(bp) Primer Final Concentration(μM) GC Content(%) Predicted Melting Temperature(℃) Molecular Weight(g/moles) Positions in GenBank accession number
nuc-RPA-F GCTCAGCAAATGCATCACAAACAGATAACGGCG 33 \ 48.5 65.01 10133.67 \
nuc-RPA-R CAGGTGTATCAACCAATAATAGTCTGAATGTCA 33 \ 36.4 57.28 10144.68 \

Gene Description

Target Gene GenBank ID
nuc \

Assay Description

Application Assay Primer Designing Software Reaction Time(min) Assay Temperature(℃) Readout System(s) Limit of Detection(LoD) Sensitivity(%) Specificity(%)
Identifying Staphylococcus aureus and Methicillin-Resistant S. aureus RPA-Cas12a \ \ \ \ 1aM \ \

Publication Description

Year of Publication Title Author(s) Journal PMID DOI
2023 Cas12a/Guide RNA-Based Platforms for Rapidly and Accurately Identifying Staphylococcus aureus and Methicillin-Resistant S. aureus Xiaoying Cao,Yanbin Chang,Chunqing Tao,Sen Chen,Qiuxia Lin,Chao Ling,Shifeng Huang,Hengshu Zhang Microbiology spectrum 36943040 10.1128/spectrum.04870-22

Cas12a/Guide RNA-Based Platforms for Rapidly and Accurately Identifying Staphylococcus aureus and Methicillin-Resistant S. aureus

Author(s):

Xiaoying Cao,Yanbin Chang,Chunqing Tao,Sen Chen,Qiuxia Lin,Chao Ling,Shifeng Huang,Hengshu Zhang

Journal:

Microbiology spectrum

Year:

2023

Abstract:

In order to ensure the prevention and control of methicillin-resistant Staphylococcus aureus (MRSA) infection, rapid and accurate detection of pathogens and their resistance phenotypes is a must. Therefore, this study aimed to develop a fast and precise nucleic acid detection platform for identifying S. aureus and MRSA. We initially constructed a CRISPR-Cas12a detection system by designing single guide RNAs (sgRNAs) specifically targeting the thermonuclease (nuc) and mecA genes. To increase the sensitivity of the CRISPR-Cas12a system, we incorporated PCR, loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA). Subsequently, we compared the sensitivity and specificity of the three amplification methods paired with the CRISPR-Cas12a system. Finally, the clinical performance of the methods was tested by analyzing the fluorescence readout of 111 clinical isolates. In order to visualize the results, lateral-flow test strip technology, which enables point-of-care testing, was also utilized. After comparing the sensitivity and specificity of three different methods, we determined that the nuc-LAMP-Cas12a and mecA-LAMP-Cas12a methods were the optimal detection methods. The nuc-LAMP-Cas12a platform showed a limit of detection (LOD) of 10 aM (~6 copies μL-1), while the mecA-LAMP-Cas12a platform demonstrated a LOD of 1 aM (~1 copy μL-1). The LOD of both platforms reached 4 × 103 fg/μL of genomic DNA. Critical evaluation of their efficiencies on 111 clinical bacterial isolates showed that they were 100% specific and 100% sensitive with both the fluorescence readout and the lateral-flow readout. Total detection time for the present assay was approximately 80 min (based on fluorescence readout) or 85 min (based on strip readout). These results indicated that the nuc-LAMP-Cas12a and mecA-LAMP-Cas12a platforms are promising tools for the rapid and accurate identification of S. aureus and MRSA. IMPORTANCE The spread of methicillin-resistant Staphylococcus aureus (MRSA) poses a major threat to global health. Isothermal amplification combined with the trans-cleavage activity of Cas12a has been exploited to generate diagnostic platforms for pathogen detection. Here, we describe the design and clinical evaluation of two highly sensitive and specific platforms, nuc-LAMP-Cas12a and mecA-LAMP-Cas12a, for the detection of S. aureus and MRSA in 111 clinical bacterial isolates. With a limit of detection (LOD) of 4 × 103 fg/μL of genomic DNA and a turnaround time of 80 to 85 min, the present assay was 100% specific and 100% sensitive using either fluorescence or the lateral-flow readout. The present assay promises clinical application for rapid and accurate identification of S. aureus and MRSA in limited-resource settings or at the point of care. Beyond S. aureus and MRSA, similar CRISPR diagnostic platforms will find widespread use in the detection of various infectious diseases, malignancies, pharmacogenetics, food contamination, and gene mutations.