RPB0078

Pathogen Description

Target Pathogen Pathogen Name NCBI Taxonomy ID Order Family Genus Species Pathogen type
SARS-CoV-2 SARS-CoV-2, 2019-nCoV, COVID-19, COVID-19 virus, SARS2, Wuhan coronavirus, Human coronavirus 2019, COVID19, HCoV-19, SARS-2, SARS-CoV4 2697049 Nidovirales Coronaviridae Betacoronavirus Severe acute respiratory syndrome-related coronavirus virus

Primer Description

Primer Name Sequence(5'-3') Length(bp) Primer Final Concentration(μM) GC Content(%) Predicted Melting Temperature(℃) Molecular Weight(g/moles) Positions in GenBank accession number
N-F GGGGAACTTCTCCTGCTAGAAT 22 \ 50 56.29 6750.45 \
N-R AGACATTTTGCTCTCAAGCTG 21 \ 42.9 52.81 6396.23 \

Gene Description

Target Gene GenBank ID
N gene \

Assay Description

Application Assay Primer Designing Software Reaction Time(min) Assay Temperature(℃) Readout System(s) Limit of Detection(LoD) Sensitivity(%) Specificity(%)
\ \ \ 20 42 CRISPR/Cas2a ≥2 copies of the target RNA 100 100

Publication Description

Year of Publication Title Author(s) Journal PMID DOI
2020 Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis. Huang, Zhen; Tian, Di; Liu, Yang; Lin, Zhen; Lyon, Christopher J; Lai, Weihua; Fusco, Dahlene; Drouin, Arnaud; Yin, Xiaoming; Hu, Tony; Ning, Bo; BIOSENS BIOELECTRON 32553350 10.1016/j.bios.2020.112316

Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis.

Author(s):

Huang, Zhen; Tian, Di; Liu, Yang; Lin, Zhen; Lyon, Christopher J; Lai, Weihua; Fusco, Dahlene; Drouin, Arnaud; Yin, Xiaoming; Hu, Tony; Ning, Bo;

Journal:

BIOSENS BIOELECTRON

Year:

2020

Abstract:

Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-throughput operation that can preferably utilize existing equipment to facilitate broad, large-scale screening efforts. We have developed a CRISPR-based assay that can meet all these criteria. This assay utilizes a custom CRISPR Cas12a/gRNA complex and a fluorescent probe to detect target amplicons produced by standard RT-PCR or isothermal recombinase polymerase amplification (RPA), to allow sensitive detection at sites not equipped with real-time PCR systems required for qPCR diagnostics. We found this approach allowed sensitive and robust detection of SARS-CoV-2 positive samples, with a sample-to-answer time of ~50 min, and a limit of detection of 2 copies per sample. CRISPR assay diagnostic results obtained nasal swab samples of individuals with suspected COVID-19 cases were comparable to paired results from a CDC-approved quantitative RT-PCR (RT-qPCR) assay performed in a state testing lab, and superior to those produced by same assay in a clinical lab, where the RT-qPCR assay exhibited multiple invalid or inconclusive results. Our assay also demonstrated greater analytical sensitivity and more robust diagnostic performance than other recently reported CRISPR-based assays. Based on these findings, we believe that a CRISPR-based fluorescent application has potential to improve current COVID-19 screening efforts.