RPB0063

Pathogen Description

Target Pathogen Pathogen Name NCBI Taxonomy ID Order Family Genus Species Pathogen type
SARS-CoV-2 SARS-CoV-2, 2019-nCoV, COVID-19, COVID-19 virus, SARS2, Wuhan coronavirus, Human coronavirus 2019, COVID19, HCoV-19, SARS-2, SARS-CoV4 2697049 Nidovirales Coronaviridae Betacoronavirus Severe acute respiratory syndrome-related coronavirus virus

Primer Description

Primer Name Sequence(5'-3') Length(bp) Primer Final Concentration(μM) GC Content(%) Predicted Melting Temperature(℃) Molecular Weight(g/moles) Positions in GenBank accession number
RdRp-F TATGCCATTAGTGCAAAGAATAGAGCTCGCAC 32 \ 43.8 61.7 9841.48 \
RdRp-R TATGCCATTAGTGCAAAGAATAGAGCTCGCAC 32 \ 43.8 61.7 9841.48 \
RdRp-P TCCTCTAGTGGCGGCTATTGATTTCAATAAbTXfTTTGATGAAACTGTCTATTG 54 \ 35.9 63.7 15997.76 \

Gene Description

Target Gene GenBank ID
RdRp gene \

Assay Description

Application Assay Primer Designing Software Reaction Time(min) Assay Temperature(℃) Readout System(s) Limit of Detection(LoD) Sensitivity(%) Specificity(%)
\ \ \ 15 42 \ 15 copies/ul 93 100

Publication Description

Year of Publication Title Author(s) Journal PMID DOI
2021 Suitcase Lab for Rapid Detection of SARS-CoV-2 Based on Recombinase Polymerase Amplification Assay. El Wahed, Ahmed Abd; Patel, Pranav; Maier, Melanie; Pietsch, Corinna; Rüster, Dana; Böhlken-Fascher, Susanne; Kissenkötter, Jonas; Behrmann, Ole; Frimpong, Michael; Diagne, Moussa Moïse; Faye, Martin; Dia, Ndongo; Shalaby, Mohamed A; Amer, Haitham; Elgamal, Mahmoud; Zaki, Ali; Ismail, Ghada; Kaiser, Marco; Corman, Victor M; Niedrig, Matthias; Landt, Olfert; Faye, Ousmane; Sall, Amadou A; Hufert, Frank T; Truyen, Uwe; Liebert, Uwe G; Weidmann, Manfred;  ANAL CHEM 33471510 10.1021/acs.analchem.0c04779

Suitcase Lab for Rapid Detection of SARS-CoV-2 Based on Recombinase Polymerase Amplification Assay.

Author(s):

El Wahed, Ahmed Abd; Patel, Pranav; Maier, Melanie; Pietsch, Corinna; Rüster, Dana; Böhlken-Fascher, Susanne; Kissenkötter, Jonas; Behrmann, Ole; Frimpong, Michael; Diagne, Moussa Moïse; Faye, Martin; Dia, Ndongo; Shalaby, Mohamed A; Amer, Haitham; Elgamal, Mahmoud; Zaki, Ali; Ismail, Ghada; Kaiser, Marco; Corman, Victor M; Niedrig, Matthias; Landt, Olfert; Faye, Ousmane; Sall, Amadou A; Hufert, Frank T; Truyen, Uwe; Liebert, Uwe G; Weidmann, Manfred; 

Journal:

ANAL CHEM

Year:

2021

Abstract:

In March 2020, the SARS-CoV-2 virus outbreak was declared as a world pandemic by the World Health Organization (WHO). The only measures for controlling the outbreak are testing and isolation of infected cases. Molecular real-time polymerase chain reaction (PCR) assays are very sensitive but require highly equipped laboratories and well-trained personnel. In this study, a rapid point-of-need detection method was developed to detect the RNA-dependent RNA polymerase (RdRP), envelope protein (E), and nucleocapsid protein (N) genes of SARS-CoV-2 based on the reverse transcription recombinase polymerase amplification (RT-RPA) assay. RdRP, E, and N RT-RPA assays required approximately 15 min to amplify 2, 15, and 15 RNA molecules of molecular standard/reaction, respectively. RdRP and E RT-RPA assays detected SARS-CoV-1 and 2 genomic RNA, whereas the N RT-RPA assay identified only SARS-CoV-2 RNA. All established assays did not cross-react with nucleic acids of other respiratory pathogens. The RT-RPA assay's clinical sensitivity and specificity in comparison to real-time RT-PCR (n = 36) were 94 and 100% for RdRP; 65 and 77% for E; and 83 and 94% for the N RT-RPA assay. The assays were deployed to the field, where the RdRP RT-RPA assays confirmed to produce the most accurate results in three different laboratories in Africa (n = 89). The RPA assays were run in a mobile suitcase laboratory to facilitate the deployment at point of need. The assays can contribute to speed up the control measures as well as assist in the detection of COVID-19 cases in low-resource settings.