RPB0045

Pathogen Description

Target Pathogen Pathogen Name NCBI Taxonomy ID Order Family Genus Species Pathogen type
SARS-CoV-2 SARS-CoV-2, 2019-nCoV, COVID-19, COVID-19 virus, SARS2, Wuhan coronavirus, Human coronavirus 2019, COVID19, HCoV-19, SARS-2, SARS-CoV4 2697049 Nidovirales Coronaviridae Betacoronavirus Severe acute respiratory syndrome-related coronavirus virus

Primer Description

Primer Name Sequence(5'-3') Length(bp) Primer Final Concentration(μM) GC Content(%) Predicted Melting Temperature(℃) Molecular Weight(g/moles) Positions in GenBank accession number
SARS-CoV2 S FP ACAGGCCTGCGTTATAGCTTGGAATTCTAAC 31 \ 45.2 61.85 9510.24 \
SARS-CoV2 S RP CCTTCAACACCATTACAAGGTGTGCTACCG 30 \ 50 63.11 9110.98 \

Gene Description

Target Gene GenBank ID
SARS-CoV S gene \

Assay Description

Application Assay Primer Designing Software Reaction Time(min) Assay Temperature(℃) Readout System(s) Limit of Detection(LoD) Sensitivity(%) Specificity(%)
\ \ \ 30 37 CRISPR-Cas12a 10copy/reaction 100 100

Publication Description

Year of Publication Title Author(s) Journal PMID DOI
2021 Detection of Infectious Viruses Using CRISPR-Cas12-Based Assay. Talwar, Chandana S; Park, Kwang-Hyun; Ahn, Woo-Chan; Kim, Yong-Sam; Kwon, Oh Seok; Yong, Dongeun; Kang, Taejoon; Woo, Euijeon; Biosensors (Basel) 34562891 10.3390/bios11090301

Detection of Infectious Viruses Using CRISPR-Cas12-Based Assay.

Author(s):

Talwar, Chandana S; Park, Kwang-Hyun; Ahn, Woo-Chan; Kim, Yong-Sam; Kwon, Oh Seok; Yong, Dongeun; Kang, Taejoon; Woo, Euijeon;

Journal:

Biosensors (Basel)

Year:

2021

Abstract:

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has severely influenced public health and economics. For the detection of SARS-CoV-2, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas)-based assays have been emerged because of their simplicity, sensitivity, specificity, and wide applicability. Herein, we have developed a CRISPR-Cas12-based assay for the detection of SARS-CoV-2. In the assay, the target amplicons are produced by isothermal reverse transcription recombinase polymerase amplification (RT-RPA) and recognized by a CRISPR-Cas12a/guide RNA (gRNA) complex that is coupled with the collateral cleavage activity of fluorophore-tagged probes, allowing either a fluorescent measurement or naked-eye detection on a lateral flow paper strip. This assay enables the sensitive detection of SARS-CoV-2 at a low concentration of 10 copies per sample. Moreover, the reliability of the method is verified by using nasal swabs and sputum of COVID-19 patients. We also proved that the current assay can be applied to other viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV), with no major changes to the basic scheme of testing. It is anticipated that the CRISPR-Cas12-based assay has the potential to serve as a point-of-care testing (POCT) tool for a wide range of infectious viruses.