|
2023 |
A New Auto-RPA-Fluorescence Detection Platform for SARS-CoV-2 |
Jing Tian, Biao Chen, Bin Zhang, Tantan Li, Zhiqiang Liang, Yujin Guo, Huping Jiao, Fenghong Liang, Longquan Xiang, Fanzhong Lin, Ruiwen Ren, Qingbin Liu |
Laboratory Medicine |
36200614 |
10.1093/labmed/lmac093 |
A New Auto-RPA-Fluorescence Detection Platform for SARS-CoV-2
Author(s):
Jing Tian, Biao Chen, Bin Zhang, Tantan Li, Zhiqiang Liang, Yujin Guo, Huping Jiao, Fenghong Liang, Longquan Xiang, Fanzhong Lin, Ruiwen Ren, Qingbin Liu
Journal:
Laboratory Medicine
Year:
2023
Abstract:
Objective: The outbreak of COVID-19 caused by SARS-CoV-2 has led to a serious worldwide pandemic. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)-based methods were recommended for routine detection of SARS-CoV-2 RNA. Because the reaction time and analytical sensitivity of qRT-PCR limits the diagnosis of SARS-CoV-2, development of a quick process of SARS-CoV-2 detection technology with high analytical sensitivity remains urgent.
Methods: We combined isothermal amplification and fluorescence detection technology to develop a new auto-recombinase polymerase amplification (RPA)-fluorescence platform that could be used in the diagnosis of SARS-CoV-2.
Results: By optimization of primers and probes, the RPA platform could detect SARS-CoV-2 nucleotides within 15 min. The limits of detection and specificity of the auto-RPA-fluorescence platform were 5 copies/µL and 100%, respectively. The accuracy of detection of the auto-RPA-fluorescence platform in the 16 positive samples was 100%.
Conclusion: The RPA platform is a potential technology for the diagnosis of SARS-CoV-2 infection.
|